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SUMMARY

We describe a multigrid multiblock method for compressible turbulent flow simulations and present

results obtained from calculations on a two-element airfoil. A vertex-based spatial discretization

method and explicit multistage Runge-Kutta time-stepping are used. The slow convergence of a

single grid method makes the multigrid method, which yields a speed up with a factor of about

20, indispensable. The numerical predictions are in good agreement with experimental results. It

is shown that the convergence of the multigrid process depends considerably on the ordering of the

various loops. If the block loop is put inside the stage loop the process converges more rapidly than

if the block loop is situated outside the stage loop in case a three-stage Runge-Kutta method is used.

If a five-stage scheme is used the process does not converge in the latter block ordering. Finally, the

process based on the five-stage method is about 60% more efficient than with the three-stage method,

if the block loop is inside the stage loop.

INTRODUCTION

Numerical simulations of turbulent flow in aerodynamic applications are frequently based on the

Reynolds-averaged Navier-Stokes equations. One of the relevant problems in aeronautics is the pre-

diction of flow quantities in complicated geometries, such as the multi-element airfoil (see figure 1).

The simulation of turbulent flow around such a mulfi;eiement airfoil configuration was one of the

Figure 1: Geometry of a two-element airfoil.

applications selected for the compressible flow solver which was developed by our group and NLR
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as a part of the Dutch ISNaSproject [1]. For this application the useof a single-block,boundary-
conforming,structured grid is impossibleand one may selecteither an unstructured grid approach
or a block-structuredgrid approach.Although the former techniquehasbeensuccessfullyappliedby
others [2], weselectedthe block-structuredapproachin view of the transparent data structure in the
coding,easeof implementationof the turbulencemodel and a high flexibility with respectto the use
of different physical modelsin different parts of the computational domain.

In apreviouspaper [3]it hasbeenshownthat for laminar and turbulent flowarounda singleairfoil
the introduction of the multiblock structure hasno influenceon the results,with respectto both the
steady-statesolution and the convergencerate. Furthermore, invoking the Euler equations instead
of the Navier-Stokesequationsin blocksoutside the boundary layer appearedto haveno significant
influence on the results. In this paper we describethe application of the multiblock concept to
the multi-element airfoil. If the Euler equationsare used throughout the computational domain,
a convergedsteady-statesolution is obtained within a reasonablecalculation time. tIowever, if the
Reynolds-averagedNavier-Stokesequationsaresolvedin the boundary layers,the rate of convergence
is unacceptably low. Therefore,a multigrid techniquewas implementedin order to acceleratethe
convergence. The resulting gain in calculation time is closeto a factor of 20, and the converged
solution is in good agreementwith wind-tunnel measurements.

In section2 the numericaltechnique,which is basedon a combinationof a finite volume method
with central spatial differencingand a Runge-Kutta explicit time-steppingmethod, is described.The
results,both for inviscid and for viscoussimulations,are presentedin section3. Finally, in section4
someconclusionsare summarized.

NUMERICAL METHOD

In this section we describethe numericalmethod usedin the flow solver. The two-dimensional,

compressible Navier-Stokes equations can be written in integral form as
..... -' ;== 2, _ 2 J

0

o-7[f£ Udzdy] + foa (Fdy- Gdx) = O, (1)

where U represents the vector of dependent variables,

U = [p, pu, pv, E] T, (2)

with p the density, u and v the Cartesian velocity components, and E the total energy density.

Further, Ft is an arbitrary part of the two-dimensional space with boundary Oft and F and G are

the Cartesian components of the total flux vector. This flux vector consists of two parts: the non-

dissipative or 'convective _ part and the dissipative or 'viscous' part, which describes the effects of vis-

cosity and heat conduction, and involves first order spatial derivatives. Tile Navier-Stokes equations

(1) are averaged over a sumciently large time interval. Due to the nonlinear terms in the convective

fluxes, the resulting 'Reynolds-averaged Navier-Stokes' equations involve averages of products of two

velocity components. These terms are modeled by a suitable turbulence model. In the present paper
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the algebraic Baldwin-Lomax turbulence model, in which the unknown terms are modeled by eddy

viscosity terms, is adopted [4].

The discretization of the Navier-Stokes equations follows the method of lines, i.e. the spatial

discretization is performed first, and subsequently the resulting set of ordinary differential equations

is integrated in time, until the steady state solution is approximated. First the computational domain

is divided into blocks and each block is partitioned in quadrilateral cells with the help of a structured,

boundary-conforming grid. The variables are stored in the grid points. A finite volume method is used

in which the integral form of the Navier-Stokes equations is applied to a control volume f_, bounded

by the dashed lines in figure 2. The convective flux through a boundary of this control volume is

J / ,:°

i

Figure 2: Control volume in the vertex-based method.

approximated using the value of the convective flux vector in the midpoint of the boundary. The

latter is calculated by averaging over the two neighboring grid points. The viscous flux vector involves

spatial derivatives of the state vector U and is approximated in the corner points of the control volume

with the use of Gauss' theorem on a grid cell. The viscous flux is subsequently calculated using the

trapezoidal rule. This method is called the vertex-based method.

The method of central differencing leads to a decoupling of odd and even grid points and to

oscillations near shock waves. Even in viscous flow cMculations the presence of the viscous dissipation

is insufficient to damp these instabilities outside shear layers. Therefore, nonlinear artificial dissipation

is added to the basic numerical scheme. This artificial dissipation consists of two contributions: fourth

order difference terms which prevent odd-even decoupling, and second order difference terms to resolve

shock waves. The second order terms are controlled by a shock sensor, which detects discontinuities

in the pressure. In the present flow solver the artificial dissipation in the boundary layers, where

the viscous dissipation should be dominant, may be reduced by multiplication with the ratio of the

local and free-stream Mach number. The role of the artificial dissipation in relation to the viscous
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dissipation is discussed in more detail in reference [5].

At the solid wall boundaries the no-slip condition is used. The density and energy density in the

grid points on a solid wall are calculated by solving the corresponding discrete conservation laws,

using the two adjacent cells within the computational domain and their mirror images inside the wall

as the control volume. The values of the density and energy density in the grid points inside the walls

are adjusted such that the adiabatic wall condition is approximated. The boundary conditions at

a (subsonic) far-field boundary are basedon characteristic the0ryl The extent of the computational

domain can be reduced without affecting the accuracy if a vortex is superimposed on the incoming

free stream outside the computational domain [6].

7

Due tothe topology of the two-eiement airfoil geometry, special points in the computational grid are

unavoidable. The computational grids used coni_aln two spec-i_] points at block boundaries, where five

cells meet (see figure 4). These points_ can be=treated in an elegant way within the same numerical

scheme, if the dummy vertices outside the 'current' block are defined appropriately. The multi-

vaiuedness of the variables at the speclgr point, caused by this asymmetric treatment, is eliminated

by taking the average of the five different values after all blocks have been treated. This is sketched

in figure 3. :_

Figure 3: Control volume for a special point.
Z

The system of ordinary differential equations, which results after spatial discretization, is integrated

in time using a time-explicit multistage Runge-Kutta method. In the present flow solver a three-stage

scheme in which the dissipative fluxes (both viscous and artificial) are calculated once per time-step,

and a five-stage scheme in which the dissipative terms are calculated only at the odd stages, are

implemented. With this treatment both calculation time is saved and the stability region of the

method is increased. Extra calculation time is saved by advancing each grid point at the maximum
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local time-stepaccordingto its own stability limit. In this way the evolution from the initial solution

to the steady state is no longer time accurate, but the steady state solution obtained is unaffected.

The above time-stepping method acts as the relaxation method and coarse grid operator in the

multigrid solver (see reference [6]). In this solver an initial solution on the finest grid is obtained with

a full multigrid method. This initial solution is corrected in the FAS-stage, where either V- or W-

cycles can be chosen. A fixed number of pre- and post-relaxations is performed before turning to the

next coarser or finer grid. The solution is transferred to a coarser grid by injection, the residuals by

full weighting and the corrections to the solution are prolonged by bilinear interpolation. In order to

increase the smoothing properties of the Runge-Kutta time-stepping technique an implicit averaging

of the residuals is applied with frozen residuals at the block boundaries. For mono-block applications

this method has given satisfactory results for both two-dimensional and three-dimensional flows [5].

In the multi-element airfoil application care has to be taken in the definition of the residual-vector

in the special points. The proposed treatment of a special point implies that the control volume is

different in each of the five blocks where such a point is found. In the required averaging the five

residual-vectors in a special point are weighed with their corresponding time-steps. Without this

weighing the multigrid process cannot converge to the single grid stationary state solution.

In this multigrid, multiblock solver with a multistage time-stepping method there are various

possibilities for intertwining the different loops. In the present study the grid loop is chosen as the

outer loop and the effect of interchanging the block and the stage loop will be studied. Several

'competing' requirements serve as possible guidance for selecting a specific ordering of these loops.

On the one hand an anticipated parallel processing of the different blocks is more efficient, if the

data transfer between the blocks is kept to a minimum, i.e. with the stage loop inside the block

loop. On the other hand the good convergence of the multigrid mono-block solver may be reduced as

the dummy variables near the block boundaries are kept frozen during more stages of the time-step.

This would suggest to put the block loop inside the stage loop. In order to study this dilemma we

implemented these two loop orders in a flexible way: a single parameter determines whether the block

loop is situated inside or outside the stage loop.

RESULTS

Description of the test-case

We will present results for a two-component airfoil geometry consisting of the NLR7301 wing

section, from which a flap has been cut out at a deflection angle of 20 ° and with a gap width of 2.6%

chord length [7] (see figure 1). The combination of a Mach number of 0.185 and an angle of incidence

of 6 ° or 13.1 °, of which the latter is close to maximum lift conditions, yields subsonic flow. The

Reynolds number based on the chord length of the airfoil is 2.51 × l0 s. In the viscous calculations
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the locationsof the transition from laminar to turbulent flow are prescribed.

The C-typecomputational grids (either for inviscidor viscousflow) wereconstructedby J.J. Benton
from British Aerospace,and aresubdividedin 37blocks (seefigure 4). The grid linesare continuous
over block boundaries. Two grids areused:one 'Euler' grid (inviscid) consistingof 16448cells, and
a 'Navier-Stokes'grid (viscous),which is refined in the boundary layers and wakesand consistsof
28288cells.

Figure 4: Block structure of the computational grid.

For both anglesof incidenceresults from wind-tunnel measurementby Van den Berg [7]are avail-
able, including velocity profiles in the boundary layers and the pressurecoefficient on the profile.
Sincethe flow is attached apart from a small laminar separationbubble near the leading edgeof
the wing, the adopted turbulence model shouldbe adequateand yield a useful comparisonbetween
experimentand calculation.

Inviscid Flow

In order to test the flow solveron the complicatedblock structure of the two-elementairfoil geom-
etry, weconsideredthe relatively simple inviscid flow case,wherein all blocksthe Euler equationsare
solved. In this wayproblemsrelatedto the turbulencemodel areseparatedfrom possiblealgorithmic
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problems. The use of the Euler equations implies that the boundary conditions at the solid wall

boundaries have to be changed. For inviscid flow there is only one physical boundary condition of

zero mass flux through the wall. In the vertex based approach the density, the pressure and the

tangential velocity at the wall are approximated by linear extrapolation.

In figure 5 the multigrid convergence behavior of the solver in the 13.1 ° case is shown. The discrete

L2-norm of the residual of the density is plotted as a function of the number of W-cycles. A converged

solution is obtained within a much smaller calculation time when compared to the single grid approach

even though only three different grid levels are available. Both for the single grid and the multigrid

calculations machine accuracy was obtained. The specific block structure nor the treatment of the

special points leads to any specific difficulties. For this inviscid test a comparison with experimental

results is not meaningful and will not be made.
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Figure 5: Convergence behavior for inviscid flow at an angle of incidence of 13.1 °.

Viscous Flow

We consider the simulations of turbulent, viscous flow and present results for the 6° case only.

Sihgle-grid calculations in which only local time-stepping is applied as a convergence acceleration

technique yield a steady-state solution which is in good agreement with the experimental results.

However, in contrast with a fully inviscid simulation, the rate of convergence is very small, and
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renders this method unacceptable for practical applications. Therefore, as a method to increase

the convergence rate further, the multigrid technique and implicit residual averaging as described in

section 2 are indispensable.

In a simulation of turbulent flow at high Reynolds number it is important that the effects related

to the physical dissipation are not outweighed by those of the numerical or artificial dissipation. This

requirement could give rise to difficulties in the present multigrid method, since the time-stepping

method used requires a certain minimum amount of dissipation for sufficient smoothing of the large

wave-number components of the error (see reference [5]). If the artificial dissipation in the boundary

layer is reduced by scaling with the ratio of the local and free-stream Mach number, i.e. decreasing

the smoothing properties of the time-stepping method, a converged solution (engineering accuracy)

could be obtained by increasing the number of pre- and post-relaxations. The convergence behavior of

this calculation during the FAS stage is shown in figure 6, where the discrete L2-norm of the residual

of the density is plotted as a function of the number of W-cycles. In the blocks outside the boundary

layers and wakes the Euler equations are solved instead of the Navier-Stokes equations. The good
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Figure 6: Viscous flow at an angle of incidence of 6.0°: convergence behavior

agreement with the wind-tunnel measurements can be inferred from figure 7, where the experimental

and numerically predicted pressure coefficients on the airfoil and flap are shown.

This solution was obtained with the block loop inside the stage loop of the five-stage Runge-Kutta

time-stepping method. Hence, the variables at the dummy vertices outside a block are updated

after every stage, which implies that the effects of the multiblock structure on the convergence are

kept to a minimum. The frequency of data transfer between the blocks makes this method less
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Figure 7: Viscous flow at an angle of incidence of 6.0°: comparison of the pressure coefficient on the

airfoil between calculation (solid) and experiment (dashed).

efficient for parallel processing. However, with the block loop outside the stage loop, i.e. with an

update of the dummy variables only after five flux evaluations, a converged solution could not be

obtained. Apparently, the interval between two moments of data transfer between the blocks has to

be sufficiently small in order to obtain a convergent multigrid method.

Further evidence for this statement is obtained from calculations with a three-stage instead of a

five-stage Runge-Kutta time-stepping method. If the block loop is outside the stage loop, the dummy

variables are updated after three flux evaluations. Although the rate of convergence is lower than

in the case with the loops interchanged (see figure 8), the solution has converged within engineering

accuracy after _ 200 W-cycles. A comparison of the three-stage and five-stage schemes with the

block loop inside the stage loop shows that the five-stage scheme is more efficient: about 60 W-cycles

suffice to get the residuals at the same level as with the three-stage scheme after 200 W-cycles. The

five-stage scheme leads to a reduction in calculation time of approximately 60% in this instance.

DISCUSSION

We presented simulation results obtained with a multigrid multiblock method for a two-element

airfoil. Both viscous and inviscid calculations were performed using the same multigrid process

and the same vertex-based spatial discretization method. Moreover, either a three- or a five-stage

313



10 2

10-20 5'0 160 150 200

# W-cycles

Figure 8: Convergence behavior of the three-stage Runge-Kutta scheme for turbulent flow; comparison

between block loop inside (solid) and outside (dashed) stage loop.

Runge-Kutta scheme was considered for the integration in time and the smoothing properties of this

relaxation method were further enhanced through the introduction of local time-stepping, implicit

residual averaging in which the residuals at the block boundaries were kept fixed to their non-smoothed
values.

The inviscid calculations have shown that a solution which is converged up to machine accuracy can

be obtained with this multigrid method. A comparison with the single grid simulation method shows

that a considerable reduction in calculation time was obtained with the multigrid method, although

the convergence of the single grid method for inviscid calculations was already quite acceptable. We

also investigated two different numerical boundary conditions at the solid walls. It appeared that

linear extrapolation of the pressure not only leads to a better convergence than constant extrapolation,

but also gives rise to a much smaller entropy layer around the airfoil. The resulting drag coefficient,

which theoretically should equal zero in this subsonic flow, is reduced by almost 60%.

In the viscous calculations the single grid method was found to yield a well converged result in the

6°-case, however, the convergence towards the steady state solution was extremely slow and makes

the use of a multigrid approach essential. A comparison of the calculation times required in both

methods shows that a total speed-up with a factor of about 20 can be reached. The numerical

predictions obtained for the lift- and pressure coefficients compare well with experimental results

and give confidence in the use of the Baldwin-bomax model for this application. The convergence

of the multigrid process was studied in detail, showing that the ordering of the various loops in the
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processhasa considerableeffect.Interchangingthe blockand stageloopsand keepingthe grid loop as
the outer loop, yields an optimal convergencewhenthe block loop is put insidethe stageloop.If the
stageloop is put inside the block loop then convergenceof the multigrid processwasabsentwhen
using the five-stageRunge-Kutta method as the relaxation method. Apparently, the smoothingof
the relaxation method becomeslesseffectiveas the number of stagesbetween two 'updates' of the
dummy-variablesincreases.This result has some less favorable consequences in view of a possible

parallel processing Of the multigrid method. On the one hand parallel processing seems more efficient

if the frequency of data transfer between the blocks can be reduced. On the other hand the reduction

of this frequency results in a reduction of the convergence rate of the multigrid process, and in some

instances even to an absence of convergence. This suggests that in a possible parallel processing of

this multigrid method, an optimal rate of data-exchange between the blocks should be determined.
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